Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Poult Sci ; 103(4): 103539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382189

RESUMO

The economic losses incurred due to reduced muscle pigmentation highlight the crucial role of melanin-based coloration in the meat of black-bone chickens. Melanogenesis in the breast muscle of black-bone chickens is currently poorly understood in terms of molecular mechanisms. This study employed whole-transcriptome sequencing to analyze black and white breast muscle samples from black-bone chickens, leading to the identification of 367 differentially expressed (DE) mRNAs, 48 DElncRNAs, 104 DEcircRNAs, and 112 DEmiRNAs involved in melanin deposition. Based on these findings, a competitive endogenous RNA (ceRNA) network was developed to better understand the complex mechanisms of melanin deposition. Furthermore, our analysis revealed key DEmRNAs (TYR, DCT, EDNRB, MLPH and OCA2) regulated by DEmiRNAs (gga-miR-140-5p, gga-miR-1682, gga-miR-3529, gga-miR-499-3p, novel-m0012-3p, gga-miR-200b-5p, gga-miR-203a, gga-miR-6651-5p, gga-miR-7455-3p, gga-miR-31-5p, miR-140-x, miR-455-x, novel-m0065-3p, gga-miR-29b-1-5p, miR-455-y, novel-m0085-3p, and gga-miR-196-1-3p). These DEmiRNAs competitively interacted with DElncRNAs including MSTRG.2609.2, MSTRG.4185.1, LOC112530666, LOC112533366, LOC771030, LOC107054724, LOC121107411, LOC100859072, LOC101750037, LOC121108550, LOC121109224, LOC121110876, and LOC101749016, as well as DEcircRNAs, such as novel_circ_000158, novel_circ_000623, novel_001518, and novel_circ_003596. The findings from this study provide insight into the mechanisms that regulate lncRNA, circRNA, miRNA, and mRNA expression in chicken melanin deposition.


Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , Melaninas/genética , 60414 , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos Peitorais/metabolismo , Carne
2.
Poult Sci ; 103(1): 103179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931400

RESUMO

Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Humanos , Animais , Músculos Peitorais/metabolismo , Galinhas/fisiologia , Colágeno Tipo IV/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Carne/análise
3.
Poult Sci ; 102(12): 103103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837679

RESUMO

Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, ß-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.


Assuntos
Galinhas , Resposta ao Choque Térmico , Masculino , Animais , Galinhas/fisiologia , Glicólise , Músculos Peitorais/metabolismo , Água/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Temperatura Alta , Dieta
4.
Poult Sci ; 102(8): 102826, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343347

RESUMO

This study aimed to investigate the level of lipid and protein oxidation in poultry breasts with severe white striping (WS; striation thickness > 1 mm) and nonaffected meats (N; normal breast) during storage under refrigeration (1°C for 14 d) and freezing (-18°C for 90 d). WS presented higher lipid content, although no difference in protein content was detected, compared to normal broiler breast (N). Regarding oxidative damages, a reduction in malondialdehyde and carbonyl protein, hexanal, octanal and nonanal levels, alongside the interaction of these compounds with other compounds in raw, roasted, and reheated breasts was observed under refrigerated storage (14 d). Freezing storage promotes an increase in carbonyls proteins, hexanal, octanal and nonanal levels at 45 d of storage in poultry meats and subsequent decrease, indicating the evolution of oxidative reactions. Regardless of the type of storage, in general, breasts with WS myopathy have higher levels of lipid and protein oxidation.


Assuntos
Galinhas , Temperatura Alta , Animais , Galinhas/metabolismo , Carne/análise , Proteínas/metabolismo , Estresse Oxidativo , Lipídeos , Músculos Peitorais/metabolismo
5.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1216-1240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36971147

RESUMO

Total 288 Ross-308-day-old male broiler chicks were randomly distributed into six dietary treatment groups in a two-way ANOVA with 2 × 3 factorial arrangements (two factors, i.e., dietary protein and energy having two types of protein, e.g., plant, animal and three different sources of energy, e.g., soybean oil, rice bran oil and sunflower oil) to justify if animal protein-soybean oil based broiler diet optimizes net profit at the expense of desirable ω-6 fatty acids in the breast muscle of the broiler chicken. Average daily feed intake (ADFI), final live weight (FLW), average daily gain (ADG), feed efficiency (FE), carcass characteristics, cardio-pulmonary morphometry, fatty acid profile of the breast muscle and cost-benefit analysis were measured. Results indicated that animal protein significantly increased 4.27% FLW, 6.13% ADFI, 4.31% ADG and 2.93% wing weight. Accordingly, soybean oil increased 4.76% FLW, 3.80% ADG and 1.36% dressing percentage at the expense of 12.07% proventriculus weight compared with sunflower oil. The generalized linear model identified no interaction effects of the sources of protein and energy on overall performance of the birds. Replacement of vegetable protein by animal protein decreased 14.01% ∑ω-3, 12.16% ∑ω-6 and 12.21% sum of polyunsaturated fatty acids (∑PUFA) and concomitantly increased 10.82% sum of saturated fatty acids (∑SFAs) in the breast muscle (Pectoralis major). Accordingly, replacement of sunflower oil by soybean oil decreased 29.17% ∑ω-3, 6.71% ∑ω-6, 11.62% sum of monounsaturated fatty acids (∑MUFAs) and 7.33% ∑PUFAs and concurrently increased 18.36% ∑SFAs in the breast muscle of the broiler birds. It was concluded that animal protein-soybean oil-based broiler diet optimized net profit at the expense of desirable ω-3 and ω-6 fatty acids in the breast muscle of the broiler chicken.


Assuntos
Ácidos Graxos Ômega-3 , Óleo de Soja , Animais , Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados , Músculos Peitorais/metabolismo , Óleo de Girassol/metabolismo
6.
Sci Rep ; 13(1): 4747, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959331

RESUMO

This integrative study of transcriptomics and metabolomics aimed to improve our understanding of Wooden Breast myopathy (WB). Breast muscle samples from 8 WB affected and 8 unaffected male broiler chickens of 47 days of age were harvested for metabolite profiling. Among these 16 samples, 5 affected and 6 unaffected also underwent gene expression profiling. The Joint Pathway Analysis was applied on 119 metabolites and 3444 genes exhibiting differential abundance or expression between WB affected and unaffected chickens. Mitochondrial dysfunctions in WB was suggested by higher levels of monoacylglycerols and down-regulated genes involved in lipid production, fatty acid beta oxidation, and oxidative phosphorylation. Lower levels of carnosine and anserine, along with down-regulated carnosine synthase 1 suggested decreased carnosine synthesis and hence impaired antioxidant capacity in WB. Additionally, Weighted Gene Co-expression Network Analysis results indicated that abundance of inosine monophosphate, significantly lower in WB muscle, was correlated with mRNA expression levels of numerous genes related to focal adhesion, extracellular matrix and intercellular signaling, implying its function in connecting and possibly regulating multiple key biological pathways. Overall, this study showed not only the consistency between transcript and metabolite profiles, but also the potential in gaining further insights from analyzing multi-omics data.


Assuntos
Carnosina , Doenças Musculares , Doenças das Aves Domésticas , Animais , Masculino , Transcriptoma , Galinhas/genética , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Carnosina/metabolismo , Perfilação da Expressão Gênica , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Metabolismo Energético/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo
7.
Biol Trace Elem Res ; 201(12): 5764-5773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36899096

RESUMO

This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 µg Se from SeGlu (SeGlu10 group) and 20 µg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/genética
8.
J Agric Food Chem ; 71(9): 4091-4100, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820528

RESUMO

The current study investigated the effect of preslaughter transport on stress response and meat quality of broilers and explored the underlying mechanisms involved in the regulation of muscle glycolysis through calcium/calmodulin-dependent protein kinase kinase (CaMKK)/AMP-activated protein kinase (AMPK) signaling. Results suggested that transport induced stress responses of broilers and caused PSE-like syndrome of pectoralis major muscle. Preslaughter transport enhanced the mRNA expressions of glycogen phosphorylase and glucose transporters, as well as the activities of glycolytic enzymes, which accelerated the breakdown of glycolytic substrates and the accumulation of lactic acid. In addition, acute stress induced abnormal intracellular calcium homeostasis by disrupting calcium channels on the cell membrane and sarcoplasmic reticulum, which led to the activation of CaMKK and promoted AMPK phosphorylation. This study provides evidence that the intracellular calcium overload and the enhancement of CaMKK/AMPK signaling are related to the accelerated muscle glycolysis of broiler chickens subjected to acute stress.


Assuntos
Proteínas Quinases Ativadas por AMP , Galinhas , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Galinhas/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Glicólise , Músculos Peitorais/metabolismo , Cálcio da Dieta/metabolismo , Aceleração
9.
J Proteomics ; 276: 104837, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36781045

RESUMO

Starting in approximately 2010, broiler breast meat myopathies, specifically woody breast meat, white striping, spaghetti meat, and gaping have increased in prevalence in the broiler meat industry. Omic methods have been used to elucidate compositional, genetic, and biochemical differences between myopathic and normal breast meat and have provided information on the factors that contribute to these myopathies. This review paper focuses on the genomic, transcriptomic, proteomic, metabolomic, and other omics research that has been conducted to unravel the molecular mechanisms involved in the development of these myopathies and their associated factors and potential causes. SIGNIFICANCE: This review manuscript summarizes poultry meat quality defects, also referred to as myopathies, that have been evaluated using omics methods. Genomics, transcriptomics, proteomics, metabolomics and other methodologies have been used to understand the genetic predisposition, the protein expression, and the biochemical pathways that are associated with the expression of woody breast meat, white striping, and other myopathies. This has allowed researchers and the industry to differentiate between chicken breast meat with and without myopathic muscle as well as the environmental and genetic conditions that contribute to differences in biochemical pathways and lead to the phenotypes associate with these different myopathies.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Proteômica , Músculos Peitorais/química , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/genética , Doenças Musculares/genética , Doenças Musculares/metabolismo , Carne/análise
10.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553580

RESUMO

The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Columbidae/genética , Columbidae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculos Peitorais/metabolismo
11.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200468

RESUMO

Migratory birds undergo seasonal changes to muscle biochemistry. Nonetheless, it is unclear to what extent these changes are attributable to the exercise of flight itself versus endogenous changes. Using starlings (Sturnus vulgaris) flying in a wind tunnel, we tested the effects of exercise training, a single bout of flight and dietary lipid composition on pectoralis muscle oxidative enzymes and lipid transporters. Starlings were either unexercised or trained over 2 weeks to fly in a wind tunnel and sampled either immediately following a long flight at the end of this training or after 2 days recovery from this flight. Additionally, they were divided into dietary groups that differed in dietary fatty acid composition (high polyunsaturates versus high monounsaturates) and amount of dietary antioxidant. Trained starlings had elevated (19%) carnitine palmitoyl transferase and elevated (11%) hydroxyacyl-CoA dehydrogenase in pectoralis muscle compared with unexercised controls, but training alone had little effect on lipid transporters. Immediately following a long wind-tunnel flight, starling pectoralis had upregulated lipid transporter mRNA (heart-type fatty acid binding protein, H-FABP, 4.7-fold; fatty acid translocase, 1.9-fold; plasma membrane fatty acid binding protein, 1.6-fold), and upregulated H-FABP protein (68%). Dietary fatty acid composition and the amount of dietary antioxidants had no effect on muscle catabolic enzymes or lipid transporter expression. Our results demonstrate that birds undergo rapid upregulation of catabolic capacity that largely becomes available during flight itself, with minor effects due to training. These effects likely combine with endogenous seasonal changes to create the migratory phenotype observed in the wild.


Assuntos
Estorninhos , Migração Animal/fisiologia , Animais , Antioxidantes/metabolismo , Carnitina/metabolismo , Coenzima A/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Oxirredutases/metabolismo , Músculos Peitorais/metabolismo , RNA Mensageiro/genética , Estorninhos/fisiologia , Transferases/metabolismo
12.
PLoS One ; 17(10): e0275160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36190974

RESUMO

The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Galinhas/genética , Galinhas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Doenças Musculares/patologia , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/patologia , Serina/metabolismo , Treonina/metabolismo
13.
Poult Sci ; 101(12): 102195, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257075

RESUMO

In this study, the effects of the Arginine/Lysine (Arg/Lys) ratio in low- and high-methionine (Met) diets on the sarcoplasmic protein profile of breast muscles from turkeys reared under optimal or challenge (Clostridium perfringens infection) conditions were determined. One-day-old Hybrid Converter female turkey poults (216 in total) obtained from a commercial hatchery on hatching day, and on the basis of their average initial body weight were randomly allocated to 12 pens (4 m2 each; 2.0 m × 2.0 m) containing litter bedding and were reared over a 42-day experimental period. Diets with high levels of Lys contained approximately 1.80% and 1.65% Lys and were offered in two successive feeding periods (days 1-28 and days 29-42). The supplemental levels of Lys were consistent with the nutritional specifications for birds at their respective ages as established in the Management Guidelines for Raising Commercial Turkeys. The experiment was based on a completely randomized 3 × 2 × 2 factorial design with three levels of Arg (90%, 100% and 110%) relative to the content of dietary Met (30 or 45%) and without (-) or with (+) C. perfringens challenge at 34, 36, or 37 d of age. Meat samples were investigated in terms of pH, color, and sarcoplasmic protein profile. The experimental factors did not influence meat quality but the dietary Arg content affected meat color. The sarcoplasmic protein profile was influenced by all studied factors, and glycolytic enzymes were the most abundant. This study evidenced strong association between the challenge conditions and the involvement of glycolytic enzymes in cell metabolism, particularly in inflammatory processes, and DNA replication and maintenance in turkeys. The results showed an effect of C. perfringens infection and feeding with different doses of Arg and Met may lead to significant consequences in cell metabolism.


Assuntos
Clostridium perfringens , Perus , Animais , Feminino , Perus/fisiologia , Ração Animal/análise , Aminoácidos , Lisina/metabolismo , Arginina/metabolismo , Galinhas/fisiologia , Dieta/veterinária , Metionina/farmacologia , Metionina/metabolismo , Músculos Peitorais/metabolismo , Inflamação/veterinária
14.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292741

RESUMO

Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the pectoralis major (p. major) muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the p. major muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.


Assuntos
Células Satélites de Músculo Esquelético , Perus , Animais , Perus/genética , Células Satélites de Músculo Esquelético/metabolismo , Transcriptoma , Músculos Peitorais/metabolismo , Desenvolvimento Muscular/genética
15.
Genes (Basel) ; 13(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36292783

RESUMO

The quality of poultry products depends on genotype, rearing system, and environment. The aim of this study was to investigate the effects of different rearing systems on meat quality, amino acid composition, and breast muscle transcriptome from Lueyang black-bone chickens. Lueyang black-bone chickens (n = 900) were randomly divided into three groups (cage, flat-net, and free-range groups), with three replicates per group (100 chickens per replicate). At 16 weeks, a total of 36 healthy chickens (six males and six females per group) were collected, and their breast muscles were sampled to detect meat quality parameters, amino acid composition, and fatty acid contents. Furthermore, breast muscles from six random hens in each group were used for RNA-seq analysis. The results revealed that the values of pH, shear force, inosine monophosphate (IMP), palmitic acid, and linoleic acid in the free-range group were significantly higher than those in the caged group (p < 0.05). Fat content in the free-range group was significantly lower than in the caged and flat-net groups (p < 0.05). Glutamate (Glu) levels, the amino acid crucial for the umami taste, was significantly higher in the free-range group than in the caged group (p < 0.05). Meanwhile, there was no significant difference between the free-range and flat-net groups (p > 0.05). The breast muscle transcriptome results showed that there were 291, 131, and 387 differently expressed genes (DEGs) among the three comparison groups (caged vs. free-range, flat-net vs. caged, and flat-net vs. free-range, respectively) that were mainly related to muscle development and amino acid metabolism pathways. To validate the accuracy of the transcriptome data, eight genes (GOS2, ASNS, NMRK2, GADL1, SMTNL2, SLC7A5, AMPD1, and GLUL) which relate to fat deposition, skeletal muscle function, and flavor formation were selected for Real-time Quantitative PCR (RT-qPCR) verification. In conclusion, these results suggested that rearing systems significantly influenced the meat quality and gene expression of Lueyang black-bone chickens. All the data proved that free-range and flat-net systems may provide better flavor to consumers by affecting the deposition of flavor substances and the expression of related genes. These findings will provide a valuable theoretical basis for the rearing system selection in the poultry industry.


Assuntos
Galinhas , Inosina Monofosfato , Animais , Feminino , Masculino , Aminoácidos/genética , Ácidos Graxos , Glutamatos/genética , Inosina Monofosfato/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Ácido Linoleico , Carne/análise , Ácido Palmítico , Músculos Peitorais/metabolismo , Transcriptoma
16.
PLoS One ; 17(9): e0274208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156596

RESUMO

Current diagnostic methods for wooden breast and white striping, common breast muscle myopathies of modern commercial broiler chickens, rely on subjective examinations of the pectoralis major muscle, time-consuming microscopy, or expensive imaging technologies. Further research on these disorders would benefit from more quantitative and objective measures of disease severity that can be used in live birds. To this end, we utilized untargeted metabolomics alongside two statistical approaches to evaluate plasma metabolites associated with wooden breast and white striping in 250 male commercial broiler chickens. First, mixed linear modeling was employed to identify metabolites with a significant association with these muscle disorders and found 98 metabolites associated with wooden breast and 44 metabolites associated with white striping (q-value < 0.05). Second, a support vector machine was constructed using stepwise feature selection to determine the smallest subset of metabolites with the highest categorization accuracy for wooden breast. The final support vector machine achieved 94% accuracy using only 6 metabolites. The metabolite 3-methylhistidine, which is often used as an index of myofibrillar breakdown in skeletal muscle, was the top metabolite for both wooden breast and white striping in our mixed linear model and was also the metabolite with highest marginal prediction accuracy (82%) for wooden breast in our support vector machine. Overall, this study identified a candidate set of metabolites for an objective measure of wooden breast or white striping severity in live birds and expanded our understanding of these muscle disorders.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/fisiologia , Masculino , Carne/análise , Doenças Musculares/metabolismo , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35973649

RESUMO

The growth rate of broiler chickens has increased by 400% over the past 50 years, and breast yields continue to increase. This has led to an increase in thoracic muscle abnormalities in broilers, with wooden breast becoming a major issue worldwide. The etiology and the mechanism underlying the etiology of wooden breasts have not yet been elucidated; however, it occurs due to oxidative stress. Reactive oxygen species, which cause oxidative stress, are mainly produced in mitochondria. Thus, in this study, we investigated the relationship between the severity of wooden breast in broilers and the characteristics of mitochondria as the source of reactive oxygen species. Sampling of the pectoralis major muscle at the ventral cranial position was conducted in 50-day-old broilers. The severity of wooden breast was classified into three groups based on the muscle fiber roundness and wing-wing contact test, with highest severity in severe wooden breast and lowest severity in normal breast. Nicotinamide adenine dinucleotide tetrazolium reductase staining revealed an increase in darkly stained muscle fibers, indicating high severity of wooden breast. The mitochondria were swollen in severe wooden breast cases, with highest swelling in severe wooden breast and lowest swelling in normal breast. The expression levels of the mitochondrial antioxidant enzyme genes superoxide dismutase 1 and superoxide dismutase 2 were significantly lower in wooden breast-severe tissue than in normal tissue. These results suggest that when the levels of reactive oxygen species in muscle fibers, which should be constant, are increased, mitochondrial homeostasis is not maintained and the damage levels increase in various membranes of the cell, leading to the disruption of normal physiological functions.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/veterinária , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Poult Sci ; 101(10): 101935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961252

RESUMO

Attaining the optimal feed conversion ratio is the unaltered goal for poultry breeding, meat yield is one of the vital reference indexes for that. Folic acid is involved in protein metabolism by acting as a transmitter of one carbon unit, and the detail mechanism for the high-dose folic acid on growth of broiler skeletal muscle is still unclarified. The present study was conducted to investigate the effect and regulatory mechanism of folic acid on deposition and metabolism of protein in broiler breast muscle. A total of 196 one-day-old AA broilers were randomly assigned to 2 treatment groups. The chicks were fed corn-soybean diet with folic acid levels of 1.3 mg/kg (CON) or 13 mg/kg (FA), respectively. The results showed that high dose of folic acid significantly increased the body weight gain, average daily gain, average daily feed intake, and feed conversion ratio of broilers during 1 to 42 d. Compared with control group, folic acid statistically augmented the breast muscle ratio of broilers at 42 d, abdominal fat percentage was also decreased in FA group. Folic acid significantly increased the gene expression of folate receptor (FR) in duodenum and jejunum at 21 d, and its relative expression in jejunum of broilers at 42 d. Furthermore, relative expression of myogenin in broiler breast muscle was upregulated in folic acid group. Folic acid supplementation significantly enhanced the protein expression of phosphorylated serine/threonine kinase (AKT) and ribosomal protein S6 kinase 1 (S6K1) in the breast muscle of broilers at 21 d and 42 d. In conclusion, the results proved that high-dose folic acid activated the AKT/mammalian target of rapamycin (mTOR) pathway and increased the activity of phosphorylation of S6K1, thereby regulating the protein deposition in breast muscle. Meanwhile, the gene expression of the myogenic determinant factor was upregulated by folic acid and then promoted the growth of breast muscle. Consequently, the growth performance, meat production and feeding efficiency were improved of broilers by adding folic acid at 13 mg/kg.


Assuntos
Ração Animal , Galinhas , Ração Animal/análise , Animais , Carbono , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Ácido Fólico , Mamíferos/metabolismo , Miogenina , Músculos Peitorais/metabolismo , Melhoramento Vegetal , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas , Serina , Serina-Treonina Quinases TOR/metabolismo
19.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762381

RESUMO

We investigated the role of mitochondrial function in the avian thermoregulatory response to a cold environment. Using black-capped chickadees (Poecile atricapillus) acclimated to cold (-10°C) and thermoneutral (27°C) temperatures, we expected to observe an upregulation of pectoralis muscle and liver respiratory capacity that would be visible in mitochondrial adjustments in cold-acclimated birds. We also predicted that these adjustments would correlate with thermogenic capacity (Msum) and basal metabolic rate (BMR). Using tissue high-resolution respirometry, mitochondrial performance was measured as respiration rate triggered by proton leak and the activity of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII) in the liver and pectoralis muscle. The activity of citrate synthase (CS) and cytochrome c oxidase (CCO) was also used as a marker of mitochondrial density. We found 20% higher total CS activity in the whole pectoralis muscle and 39% higher total CCO activity in the whole liver of cold-acclimated chickadees relative to that of birds kept at thermoneutrality. This indicates that cold acclimation increased overall aerobic capacity of these tissues. Msum correlated positively with mitochondrial proton leak in the muscle of cold-acclimated birds while BMR correlated with OXPHOSCI in the liver with a pattern that differed between treatments. Consequently, this study revealed a divergence in mitochondrial metabolism between thermal acclimation states in birds. Some functions of the mitochondria covary with thermogenic capacity and basal maintenance costs in patterns that are dependent on temperature and body mass.


Assuntos
Metabolismo Basal , Aves Canoras , Aclimatação/fisiologia , Animais , Metabolismo Basal/fisiologia , Temperatura Baixa , Mitocôndrias/metabolismo , Músculos Peitorais/metabolismo , Prótons , Aves Canoras/fisiologia
20.
J Nutr ; 152(9): 2072-2079, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728044

RESUMO

BACKGROUND: Supernutrition of selenium (Se) in an effort to produce Se-enriched meat may inadvertently cause lipid accumulation. Se-enriched Cardamine violifolia (SeCv) contains >80% of Se in organic forms. OBJECTIVES: This study was to determine whether feeding chickens a high dose of SeCv could produce Se-biofortified muscle without altering their lipid metabolism. METHODS: Day-old male broilers were allocated to 4 groups (6 cages/group and 6 chicks/cage) and were fed either a corn-soy base diet (BD, 0.13-0.15 mg Se/kg), the BD plus 0.5 mg Se/kg as sodium selenite (SeNa) or as SeCv, or the BD plus a low-Se Cardamine violifolia (Cv, 0.20-0.21mg Se/kg). At week 6, concentrations of Se and lipid and expression of selenoprotein and lipid metabolism-related genes were determined in the pectoral muscle and liver. RESULTS: The 4 diets showed no effects on growth performance of broilers. Compared with the other 3 diets, SeCv elevated (P < 0.05) Se concentrations in the pectoral muscle and liver by 14.4-127% and decreased (P < 0.05) total cholesterol concentrations by 12.5-46.7% and/or triglyceride concentrations by 28.8-31.1% in the pectoral muscle and/or liver, respectively. Meanwhile, SeCv enhanced (P < 0.05) muscular α-linolenic acid (80.0%) and hepatic arachidonic acid (58.3%) concentrations compared with SeNa and BD, respectively. SeCv downregulated (P < 0.05) the cholesterol and triglyceride synthesis-related proteins (sterol regulatory element binding transcription factor 2 and diacylglycerol O-acyltransferase 2) and upregulated (P < 0.05) hydrolysis and ß-oxidation of fatty acid-related proteins (lipoprotein lipase, fatty acid binding protein 1, and carnitine palmitoyltransferase 1A), as well as selenoprotein P1 and thioredoxin reductase activity in the pectoral muscle and/or liver compared with SeNa. CONCLUSIONS: Compared with SeNa, SeCv effectively raised Se and reduced lipids in the liver and muscle of broilers. The effect was mediated through the regulation of the cholesterol and triglyceride biosynthesis and utilization-related genes.


Assuntos
Cardamine , Selênio , Ração Animal , Animais , Cardamine/metabolismo , Galinhas/metabolismo , Colesterol/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Lipídeos/farmacologia , Fígado/metabolismo , Masculino , Músculos Peitorais/metabolismo , Selenoproteínas/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...